Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(15): e2320194121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568967

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since its emergence in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a recombinant SARS-CoV-2 (nsp15mut) expressing catalytically inactivated nsp15, which we show promoted increased dsRNA accumulation. Infection with SARS-CoV-2 nsp15mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI cultures.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Endorribonucleases/metabolismo , Transdução de Sinais , Antivirais
2.
mBio ; 15(4): e0312923, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38477472

RESUMO

The SARS-CoV-2 pandemic was marked with emerging viral variants, some of which were designated as variants of concern (VOCs) due to selection and rapid circulation in the human population. Here, we elucidate functional features of each VOC linked to variations in replication rate. Patient-derived primary nasal cultures grown at air-liquid interface were used to model upper respiratory infection and compared to cell lines derived from human lung epithelia. All VOCs replicated to higher titers than the ancestral virus, suggesting a selection for replication efficiency. In primary nasal cultures, Omicron replicated to the highest titers at early time points, followed by Delta, paralleling comparative studies of population sampling. All SARS-CoV-2 viruses entered the cell primarily via a transmembrane serine protease 2 (TMPRSS2)-dependent pathway, and Omicron was more likely to use an endosomal route of entry. All VOCs activated and overcame dsRNA-induced cellular responses, including interferon (IFN) signaling, oligoadenylate ribonuclease L degradation, and protein kinase R activation. Among the VOCs, Omicron infection induced expression of the most IFN and IFN-stimulated genes. Infections in nasal cultures resulted in cellular damage, including a compromise of cell barrier integrity and loss of nasal cilia and ciliary beating function, especially during Delta infection. Overall, Omicron was optimized for replication in the upper respiratory tract and least favorable in the lower respiratory cell line, and Delta was the most cytopathic for both upper and lower respiratory cells. Our findings highlight the functional differences among VOCs at the cellular level and imply distinct mechanisms of pathogenesis in infected individuals. IMPORTANCE: Comparative analysis of infections by SARS-CoV-2 ancestral virus and variants of concern, including Alpha, Beta, Delta, and Omicron, indicated that variants were selected for efficiency in replication. In infections of patient-derived primary nasal cultures grown at air-liquid interface to model upper respiratory infection, Omicron reached the highest titers at early time points, a finding that was confirmed by parallel population sampling studies. While all infections overcame dsRNA-mediated host responses, infections with Omicron induced the strongest interferon and interferon-stimulated gene response. In both primary nasal cultures and lower respiratory cell line, infections by Delta were most damaging to the cells as indicated by syncytia formation, loss of cell barrier integrity, and nasal ciliary function.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Linhagem Celular , Interferons
4.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014074

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since emerging in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a mutant recombinant SARS-CoV-2 (nsp15mut) expressing a catalytically inactive nsp15. Infection with SARS-CoV-2 nsp15 mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type (WT) virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI culture.

5.
J Vis Exp ; (199)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37811957

RESUMO

Three highly pathogenic human coronaviruses (HCoVs) - SARS-CoV (2002), MERS-CoV (2012), and SARS-CoV-2 (2019) - have emerged and caused significant public health crises in the past 20 years. Four additional HCoVs cause a significant portion of common cold cases each year (HCoV-NL63, -229E, -OC43, and -HKU1), highlighting the importance of studying these viruses in physiologically relevant systems. HCoVs enter the respiratory tract and establish infection in the nasal epithelium, the primary site encountered by all respiratory pathogens. We use a primary nasal epithelial culture system in which patient-derived nasal samples are grown at an air-liquid interface (ALI) to study host-pathogen interactions at this important sentinel site. These cultures recapitulate many features of the in vivo airway, including the cell types present, ciliary function, and mucus production. We describe methods to characterize viral replication, host cell tropism, virus-induced cytotoxicity, and innate immune induction in nasal ALI cultures following HCoV infection, using recent work comparing lethal and seasonal HCoVs as an example1. An increased understanding of host-pathogen interactions in the nose has the potential to provide novel targets for antiviral therapeutics against HCoVs and other respiratory viruses that will likely emerge in the future.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Células Epiteliais , SARS-CoV-2 , Replicação Viral , Mucosa Nasal
6.
bioRxiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37662273

RESUMO

The SARS-CoV-2 pandemic was marked with emerging viral variants, some of which were designated as variants of concern (VOCs) due to selection and rapid circulation in the human population. Here we elucidate functional features of each VOC linked to variations in replication rate. Patient-derived primary nasal cultures grown at air-liquid-interface (ALI) were used to model upper-respiratory infection and human lung epithelial cell lines used to model lower-respiratory infection. All VOCs replicated to higher titers than the ancestral virus, suggesting a selection for replication efficiency. In primary nasal cultures, Omicron replicated to the highest titers at early time points, followed by Delta, paralleling comparative studies of population sampling. All SARS-CoV-2 viruses entered the cell primarily via a transmembrane serine protease 2 (TMPRSS2)-dependent pathway, and Omicron was more likely to use an endosomal route of entry. All VOCs activated and overcame dsRNA-induced cellular responses including interferon (IFN) signaling, oligoadenylate ribonuclease L degradation and protein kinase R activation. Among the VOCs, Omicron infection induced expression of the most IFN and IFN stimulated genes. Infections in nasal cultures resulted in cellular damage, including a compromise of cell-barrier integrity and loss of nasal cilia and ciliary beating function, especially during Delta infection. Overall, Omicron was optimized for replication in the upper-respiratory system and least-favorable in the lower-respiratory cell line; and Delta was the most cytopathic for both upper and lower respiratory cells. Our findings highlight the functional differences among VOCs at the cellular level and imply distinct mechanisms of pathogenesis in infected individuals.

7.
Proc Natl Acad Sci U S A ; 120(15): e2218083120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37023127

RESUMO

The nasal epithelium is the initial entry portal and primary barrier to infection by all human coronaviruses (HCoVs). We utilize primary human nasal epithelial cells grown at air-liquid interface, which recapitulate the heterogeneous cellular population as well as mucociliary clearance functions of the in vivo nasal epithelium, to compare lethal [Severe acute respiratory syndrome (SARS)-CoV-2 and Middle East respiratory syndrome-CoV (MERS-CoV)] and seasonal (HCoV-NL63 and HCoV-229E) HCoVs. All four HCoVs replicate productively in nasal cultures, though replication is differentially modulated by temperature. Infections conducted at 33 °C vs. 37 °C (reflective of temperatures in the upper and lower airway, respectively) revealed that replication of both seasonal HCoVs (HCoV-NL63 and -229E) is significantly attenuated at 37 °C. In contrast, SARS-CoV-2 and MERS-CoV replicate at both temperatures, though SARS-CoV-2 replication is enhanced at 33 °C late in infection. These HCoVs also diverge significantly in terms of cytotoxicity induced following infection, as the seasonal HCoVs as well as SARS-CoV-2 cause cellular cytotoxicity as well as epithelial barrier disruption, while MERS-CoV does not. Treatment of nasal cultures with type 2 cytokine IL-13 to mimic asthmatic airways differentially impacts HCoV receptor availability as well as replication. MERS-CoV receptor DPP4 expression increases with IL-13 treatment, whereas ACE2, the receptor used by SARS-CoV-2 and HCoV-NL63, is down-regulated. IL-13 treatment enhances MERS-CoV and HCoV-229E replication but reduces that of SARS-CoV-2 and HCoV-NL63, reflecting the impact of IL-13 on HCoV receptor availability. This study highlights diversity among HCoVs during infection of the nasal epithelium, which is likely to influence downstream infection outcomes such as disease severity and transmissibility.


Assuntos
COVID-19 , Coronaviridae , Coronavirus Humano 229E , Humanos , Interleucina-13/metabolismo , Estações do Ano , SARS-CoV-2 , Células Epiteliais
8.
Int Forum Allergy Rhinol ; 13(8): 1525-1534, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36565436

RESUMO

BACKGROUND: Succinate, although most famous for its role in the Krebs cycle, can be released extracellularly as a signal of cellular distress, particularly in situations of metabolic stress and inflammation. Solitary chemosensory cells (SCCs) express SUCNR1, the succinate receptor, and modulate type 2 inflammatory responses in helminth and protozoal infections in the small intestine. SCCs are the dominant epithelial source of interleukin-25, as well as an important source of cysteinyl leukotrienes in the airway, and have been implicated as upstream agents in type 2 inflammation in chronic rhinosinusitis (CRS) and asthma. METHODS: In this study, we used scRNAseq analysis, live cell imaging of intracellular calcium from primary sinonasal air-liquid interface (ALI) cultures from 1 donor, and measure antimicrobial peptide release from 5 donors to demonstrate preliminary evidence suggesting that succinate can act as a stimulant of SCCs in the human sinonasal epithelium. RESULTS: Results from scRNAseq analysis show that approximately 10% of the SCC/ionocyte cluster of cells expressed SUCNR1 as well as a small population of immune cells. Using live cell imaging of intracellular calcium, we also demonstrate that clusters of cells on primary sinonasal ALI cultures initiated calcium-mediated signaling in response to succinate stimulation. Furthermore, we present evidence that primary sinonasal ALI cultures treated with succinate had increased levels of apical beta-defensin 2, an antimicrobial peptide, compared to treatment with a control solution. CONCLUSION: Overall, these findings demonstrate the need for further investigation into the activation of the sinonasal epithelium by succinate in the pathogenesis of CRS.


Assuntos
Rinite , Sinusite , Humanos , Ácido Succínico/metabolismo , Cálcio/metabolismo , Epitélio/metabolismo , Doença Crônica , Inflamação , Peptídeos Antimicrobianos , Células Epiteliais/metabolismo
9.
bioRxiv ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38187597

RESUMO

All respiratory viruses establish primary infections in the nasal epithelium, where efficient innate immune induction may prevent dissemination to the lower airway and thus minimize pathogenesis. Human coronaviruses (HCoVs) cause a range of pathologies, but the host and viral determinants of disease during common cold versus lethal HCoV infections are poorly understood. We model the initial site of infection using primary nasal epithelial cells cultured at air-liquid interface (ALI). HCoV-229E, HCoV-NL63 and human rhinovirus-16 are common cold-associated viruses that exhibit unique features in this model: early induction of antiviral interferon (IFN) signaling, IFN-mediated viral clearance, and preferential replication at nasal airway temperature (33°C) which confers muted host IFN responses. In contrast, lethal SARS-CoV-2 and MERS-CoV encode antagonist proteins that prevent IFN-mediated clearance in nasal cultures. Our study identifies features shared among common cold-associated viruses, highlighting nasal innate immune responses as predictive of infection outcomes and nasally-directed IFNs as potential therapeutics.

10.
bioRxiv ; 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36299422

RESUMO

The nasal epithelium is the initial entry portal and primary barrier to infection by all human coronaviruses (HCoVs). We utilize primary nasal epithelial cells grown at air-liquid interface, which recapitulate the heterogeneous cellular population as well as mucociliary clearance functions of the in vivo nasal epithelium, to compare lethal (SARS-CoV-2 and MERS-CoV) and seasonal (HCoV-NL63 and HCoV-229E) HCoVs. All four HCoVs replicate productively in nasal cultures but diverge significantly in terms of cytotoxicity induced following infection, as the seasonal HCoVs as well as SARS-CoV-2 cause cellular cytotoxicity as well as epithelial barrier disruption, while MERS-CoV does not. Treatment of nasal cultures with type 2 cytokine IL-13 to mimic asthmatic airways differentially impacts HCoV replication, enhancing MERS-CoV replication but reducing that of SARS-CoV-2 and HCoV-NL63. This study highlights diversity among HCoVs during infection of the nasal epithelium, which is likely to influence downstream infection outcomes such as disease severity and transmissibility.

11.
Proc Natl Acad Sci U S A ; 119(21): e2123208119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35594398

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into humans in 2012, causing highly lethal respiratory disease. The severity of disease may be, in part, because MERS-CoV is adept at antagonizing early innate immune pathways­interferon (IFN) production and signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L)­activated in response to viral double-stranded RNA (dsRNA) generated during genome replication. This is in contrast to severe acute respiratory syndrome CoV-2 (SARS-CoV-2), which we recently reported to activate PKR and RNase L and, to some extent, IFN signaling. We previously found that MERS-CoV accessory proteins NS4a (dsRNA binding protein) and NS4b (phosphodiesterase) could weakly suppress these pathways, but ablation of each had minimal effect on virus replication. Here we investigated the antagonist effects of the conserved coronavirus endoribonuclease (EndoU), in combination with NS4a or NS4b. Inactivation of EndoU catalytic activity alone in a recombinant MERS-CoV caused little if any effect on activation of the innate immune pathways during infection. However, infection with recombinant viruses containing combined mutations with inactivation of EndoU and deletion of NS4a or inactivation of the NS4b phosphodiesterase promoted robust activation of dsRNA-induced innate immune pathways. This resulted in at least tenfold attenuation of replication in human lung­derived A549 and primary nasal cells. Furthermore, replication of these recombinant viruses could be rescued to the level of wild-type MERS-CoV by knockout of host immune mediators MAVS, PKR, or RNase L. Thus, EndoU and accessory proteins NS4a and NS4b together suppress dsRNA-induced innate immunity during MERS-CoV infection in order to optimize viral replication.


Assuntos
COVID-19 , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Infecções por Coronavirus/imunologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células Epiteliais/metabolismo , Humanos , Imunidade Inata , Pulmão/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Mucosa Nasal , SARS-CoV-2/patogenicidade , Endorribonucleases Específicas de Uridilato
12.
Int Forum Allergy Rhinol ; 12(10): 1232-1241, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35032094

RESUMO

BACKGROUND: Patients with aspirin-exacerbated respiratory disease (AERD) are among the most challenging rhinologic patients to treat. AERD has a complex inflammatory milieu of lipid mediators and cytokines. In this study we evaluated cytokine differences in the complex AERD environment at the mucus, epithelial, and tissue levels. METHODS: Samples were acquired at the time of sinus surgery from 21 patients (seven steroid-treated, 14 untreated) with aspirin challenge-confirmed AERD. Three methods (sponge adsorption, epithelial brushing, tissue biopsy) were used to acquire samples from the respective sinus sampling sites (mucus, polyp epithelium, and full-thickness polyp) of each patient. We measured and compared 16 cytokine concentrations in AERD patients with or without prednisone treatment using the Luminex platform. RESULTS: In most sampling sites, IL-5, IL-6, IL-10, IL-13, IL-33, CCL20, and TNF-α were detected at higher concentrations than IFN-γ, IL-1ß, IL-17A, IL-4, IL-22, IL-17E/IL25, and GM-CSF. Each sampling site had a different pattern of cytokine levels, and except for IL-5 and IL-25 there was no correlation among sampling methods for each cytokine tested. The most notable and significant decreases in cytokines from those treated with prednisone were observed in the epithelium for IL-5, IL-10, IL-33, and IFN-γ. CONCLUSIONS: In the epithelial samples, type 2-associated cytokines IL-5 and IL-33, the anti-inflammatory cytokine IL-10, and IFN-γ were lower in AERD patients treated with prednisone. This work serves as a basis to assess therapeutic-induced mucosal cytokine responses in AERD and indicates that the site of cytokine measurement is an important consideration when assessing results.


Assuntos
Asma Induzida por Aspirina , Pólipos Nasais , Sinusite , Aspirina/efeitos adversos , Asma Induzida por Aspirina/tratamento farmacológico , Citocinas , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Interleucina-10 , Interleucina-13 , Interleucina-17 , Interleucina-33 , Interleucina-4 , Interleucina-5 , Interleucina-6 , Lipídeos , Pólipos Nasais/tratamento farmacológico , Prednisona/uso terapêutico , Sinusite/induzido quimicamente , Fator de Necrose Tumoral alfa
13.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33811184

RESUMO

Coronaviruses are adept at evading host antiviral pathways induced by viral double-stranded RNA, including interferon (IFN) signaling, oligoadenylate synthetase-ribonuclease L (OAS-RNase L), and protein kinase R (PKR). While dysregulated or inadequate IFN responses have been associated with severe coronavirus infection, the extent to which the recently emerged SARS-CoV-2 activates or antagonizes these pathways is relatively unknown. We found that SARS-CoV-2 infects patient-derived nasal epithelial cells, present at the initial site of infection; induced pluripotent stem cell-derived alveolar type 2 cells (iAT2), the major cell type infected in the lung; and cardiomyocytes (iCM), consistent with cardiovascular consequences of COVID-19 disease. Robust activation of IFN or OAS-RNase L is not observed in these cell types, whereas PKR activation is evident in iAT2 and iCM. In SARS-CoV-2-infected Calu-3 and A549ACE2 lung-derived cell lines, IFN induction remains relatively weak; however, activation of OAS-RNase L and PKR is observed. This is in contrast to Middle East respiratory syndrome (MERS)-CoV, which effectively inhibits IFN signaling and OAS-RNase L and PKR pathways, but is similar to mutant MERS-CoV lacking innate immune antagonists. Remarkably, OAS-RNase L and PKR are activated in MAVS knockout A549ACE2 cells, demonstrating that SARS-CoV-2 can induce these host antiviral pathways despite minimal IFN production. Moreover, increased replication and cytopathic effect in RNASEL knockout A549ACE2 cells implicates OAS-RNase L in restricting SARS-CoV-2. Finally, while SARS-CoV-2 fails to antagonize these host defense pathways, which contrasts with other coronaviruses, the IFN signaling response is generally weak. These host-virus interactions may contribute to the unique pathogenesis of SARS-CoV-2.


Assuntos
Células Epiteliais/imunologia , Células Epiteliais/virologia , Imunidade Inata , Pulmão/patologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/virologia , RNA de Cadeia Dupla/metabolismo , SARS-CoV-2/imunologia , Células A549 , Endorribonucleases/metabolismo , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Nariz/virologia , Replicação Viral , eIF-2 Quinase
14.
Respir Res ; 22(1): 31, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509163

RESUMO

BACKGROUND: Epithelial solitary chemosensory cell (tuft cell) bitter taste signal transduction occurs through G protein coupled receptors and calcium-dependent signaling pathways. Type II taste cells, which utilize the same bitter taste signal transduction pathways, may also utilize cyclic adenosine monophosphate (cAMP) as an independent signaling messenger in addition to calcium. METHODS: In this work we utilized specific pharmacologic inhibitors to interrogate the short circuit current (Isc) of polarized nasal epithelial cells mounted in Ussing chambers to assess the electrophysiologic changes associated with bitter agonist (denatonium) treatment. We also assessed release of human ß-defensin-2 from polarized nasal epithelial cultures following treatment with denatonium benzoate and/or potassium channel inhibitors. RESULTS: We demonstrate that the bitter taste receptor agonist, denatonium, decreases human respiratory epithelial two-pore potassium (K2P) current in polarized nasal epithelial cells mounted in Ussing chambers. Our data further suggest that this occurs via a cAMP-dependent signaling pathway. We also demonstrate that this decrease in potassium current lowers the threshold for denatonium to stimulate human ß-defensin-2 release. CONCLUSIONS: These data thus demonstrate that, in addition to taste transducing calcium-dependent signaling, bitter taste receptor agonists can also activate cAMP-dependent respiratory epithelial signaling pathways to modulate K2P currents. Bitter-agonist regulation of potassium currents may therefore serve as a means of rapid regional epithelial signaling, and further study of these pathways may provide new insights into regulation of mucosal ionic composition and innate mechanisms of epithelial defense.


Assuntos
AMP Cíclico/metabolismo , Canais de Potássio/metabolismo , Compostos de Amônio Quaternário/farmacologia , Mucosa Respiratória/metabolismo , Papilas Gustativas/metabolismo , Paladar/fisiologia , Agentes Aversivos/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Humanos , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Paladar/efeitos dos fármacos , Papilas Gustativas/efeitos dos fármacos
15.
bioRxiv ; 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34981054

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into humans in 2012, causing highly lethal respiratory disease. The severity of disease may be in part because MERS-CoV is adept at antagonizing early innate immune pathways - interferon (IFN) production and signaling, protein kinase R (PKR), and oligoadenylate synthetase ribonuclease L (OAS/RNase L) - generated in response to viral double-stranded (ds)RNA generated during genome replication. This is in contrast to SARS-CoV-2, which we recently reported activates PKR and RNase L and to some extent, IFN signaling. We previously found that MERS-CoV accessory proteins NS4a (dsRNA binding protein) and NS4b (phosphodiesterase) could weakly suppress these pathways, but ablation of each had minimal effect on virus replication. Here we investigated the antagonist effects of the conserved coronavirus endoribonuclease (EndoU), in combination with NS4a or NS4b. Inactivation of EndoU catalytic activity alone in a recombinant MERS-CoV caused little if any effect on activation of the innate immune pathways during infection. However, infection with recombinant viruses containing combined mutations with inactivation of EndoU and deletion of NS4a or inactivation of the NS4b phosphodiesterase promoted robust activation of the dsRNA-induced innate immune pathways. This resulted in ten-fold attenuation of replication in human lung derived A549 and primary nasal cells. Furthermore, replication of these recombinant viruses could be rescued to the level of WT MERS-CoV by knockout of host immune mediators MAVS, PKR, or RNase L. Thus, EndoU and accessory proteins NS4a and NS4b together suppress dsRNA-induced innate immunity during MERS-CoV infection in order to optimize viral replication. IMPORTANCE: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) causes highly lethal respiratory disease. MERS-CoV encodes several innate immune antagonists, accessory proteins NS4a and NS4b unique to the merbeco lineage and the nsp15 protein endoribonuclease (EndoU), conserved among all coronaviruses. While mutation of each antagonist protein alone has little effect on innate immunity, infections with recombinant MERS-CoVs with mutations of EndoU in combination with either NS4a or NS4b, activate innate signaling pathways and are attenuated for replication. Our data indicate that EndoU and accessory proteins NS4a and NS4b together suppress innate immunity during MERS-CoV infection, to optimize viral replication. This is in contrast to SARS-CoV-2 which activates these pathways and consistent with greater mortality observed during MERS-CoV infection compared to SARS-CoV-2.

16.
Int Forum Allergy Rhinol ; 11(6): 967-975, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32885614

RESUMO

BACKGROUND: Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) and CRS without nasal polyps (CRSsNP), and aspirin-exacerbated respiratory disease (AERD) have varying levels of inflammation and disease severity. Solitary chemosensory cells (SCCs) are enriched in nasal polyps, are the primary source of interleukin 25 (IL-25) in upper airways, leading to type 2 inflammation, and are activated by bitter-tasting denatonium benzoate (DB). Thus, we sought to evaluate DB taste perception at a range of concentrations in order to identify 1 that most differentiates CRS subgroups from controls. METHODS: CRSsNP (n = 25), CRSwNP (n = 26), and AERD (n = 27) patients as well as controls (n = 25) tasted 6 DB concentrations in a fixed, random order, rating on a category scale of 0 (no intensity) to 12 (extremely intense). Sinonasal epithelial cultures were treated with and without denatonium and analyzed for IL-25 via flow cytometry. RESULTS: CRSsNP patients rated DB as significantly less intense than did controls at all concentrations: 5.62 × 10-9 M, 1.00 × 10-8 M, 1.78 × 10-8 M, 3.16 × 10-8 M, 5.62 × 10-8 M, and 1.00 × 10-7 M (all p < 0.0083). CRSwNP patients did not show significant differences from controls. AERD patients rated DB as significantly more intense than did controls at concentrations of 1.00 × 10-8 M and 3.16 × 10-8 M (p < 0.0083). In vitro data demonstrated significant increase in IL-25-positive cells after denatonium stimulation (n = 5), compared to control (n = 5) (p = 0.012). CONCLUSION: Our findings link in vitro DB stimulation of sinonasal tissue with increased IL-25 and show differential DB taste perception in CRS subgroups relative to the control group, with CRSsNP being hyposensitive and AERD being hypersensitive. We propose a concentration of 3.16 × 10-8 M for future study of clinical utility.


Assuntos
Pólipos Nasais , Rinite , Sinusite , Doença Crônica , Humanos , Compostos de Amônio Quaternário , Percepção Gustatória
17.
Int Forum Allergy Rhinol ; 11(5): 877-884, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33040489

RESUMO

BACKGROUND: Solitary chemosensory cells (SCCs) in the murine nasal epithelium are discrete specialized cells that respond to irritants and activate trigeminal nerve fibers through the release of acetylcholine (ACh), resulting in local neurogenic inflammation. In addition to releasing ACh, SCCs are the exclusive epithelial source of interleukin (IL)-25. In humans, SCCs are significantly expanded in sinonasal polyps (NPs). However, the SCC-trigeminal synapse has yet to be demonstrated in human sinonasal epithelium. METHODS: Immunofluorescence for trigeminal nerve fiber markers, nicotinic ACh receptors (nChR), and SCC markers was performed in vibratome sections from polyp and healthy turbinate tissue. Quantitative polymerase chain reaction and immunofluorescence of cultured epithelial cells were used to evaluate the expansion of SCCs. Last, intracellular calcium imaging was used to demonstrate cholinergic signaling in sinonasal epithelial cells. RESULTS: Calcitonin gene-related peptide (CGRP) immunostaining was used to identify cholinergic nerve endings, which were only evident in sections from the inferior turbinate and intertwined with SCCs (α-gustducin-positive cells). CGRP-positive nerve endings were not identified in sections from NPs. Human SCCs expressed nChR as well as the ACh synthetic enzyme choline acetyltransferase. Live cell calcium imaging demonstrated functionally active cholinergic signaling in discrete sinonasal epithelial cells, consistent with SCCs. Finally, SCC-specific genes were dramatically upregulated with pretreatment with IL-13 and nicotinic agonists. CONCLUSION: SCCs are innervated by trigeminal nerve endings in healthy turbinate tissue but not in NPs. SCCs express ACh receptors as well as choline acetyltransferase and, in the setting of a type 2 inflammatory environment, denervated SCCs dramatically expand with nicotinic stimulation.


Assuntos
Células Quimiorreceptoras , Receptores Colinérgicos , Animais , Humanos , Camundongos , Mucosa Nasal , Terminações Nervosas , Nervo Trigêmeo
18.
bioRxiv ; 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32995797

RESUMO

Coronaviruses are adept at evading host antiviral pathways induced by viral double-stranded RNA, including interferon (IFN) signaling, oligoadenylate synthetase-ribonuclease L (OAS-RNase L), and protein kinase R (PKR). While dysregulated or inadequate IFN responses have been associated with severe coronavirus infection, the extent to which the recently emerged SARS-CoV-2 activates or antagonizes these pathways is relatively unknown. We found that SARS-CoV-2 infects patient-derived nasal epithelial cells, present at the initial site of infection, induced pluripotent stem cell-derived alveolar type 2 cells (iAT2), the major cell type infected in the lung, and cardiomyocytes (iCM), consistent with cardiovascular consequences of COVID-19 disease. Robust activation of IFN or OAS-RNase L is not observed in these cell types, while PKR activation is evident in iAT2 and iCM. In SARS-CoV-2 infected Calu-3 and A549 ACE2 lung-derived cell lines, IFN induction remains relatively weak; however activation of OAS-RNase L and PKR is observed. This is in contrast to MERS-CoV, which effectively inhibits IFN signaling as well as OAS-RNase L and PKR pathways, but similar to mutant MERS-CoV lacking innate immune antagonists. Remarkably, both OAS-RNase L and PKR are activated in MAVS knockout A549 ACE2 cells, demonstrating that SARS-CoV-2 can induce these host antiviral pathways despite minimal IFN production. Moreover, increased replication and cytopathic effect in RNASEL knockout A549 ACE2 cells implicates OAS-RNase L in restricting SARS-CoV-2. Finally, while SARS-CoV-2 fails to antagonize these host defense pathways, which contrasts with other coronaviruses, the IFN signaling response is generally weak. These host-virus interactions may contribute to the unique pathogenesis of SARS-CoV-2. SIGNIFICANCE: SARS-CoV-2 emergence in late 2019 led to the COVID-19 pandemic that has had devastating effects on human health and the economy. Early innate immune responses are essential for protection against virus invasion. While inadequate innate immune responses are associated with severe COVID-19 diseases, understanding of the interaction of SARS-CoV-2 with host antiviral pathways is minimal. We have characterized the innate immune response to SARS-CoV-2 infections in relevant respiratory tract derived cells and cardiomyocytes and found that SARS-CoV-2 activates two antiviral pathways, oligoadenylate synthetase-ribonuclease L (OAS-RNase L), and protein kinase R (PKR), while inducing minimal levels of interferon. This in contrast to MERS-CoV which inhibits all three pathways. Activation of these pathways may contribute to the distinctive pathogenesis of SARS-CoV-2.

19.
Sci Rep ; 8(1): 3555, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29476075

RESUMO

Emphysema is characterized by irreversibly enlarged airspaces and destruction of alveolar walls. One of the factors contributing to this disease pathogenesis is an elevation in extracellular matrix (ECM) degradation in the lung. Alveolar type II (ATII) cells produce and secrete pulmonary surfactants and proliferate to restore the epithelium after damage. We isolated ATII cells from control non-smokers, smokers and patients with emphysema to determine the role of NFE2 (nuclear factor, erythroid-derived 2). NFE2 is a heterodimer composed of two subunits, a 45 kDa (p45 NFE2) and 18 kDa (p18 NFE2) polypeptides. Low expression of p45 NFE2 in patients with emphysema correlated with a high ECM degradation. Moreover, we found that NFE2 knockdown increased cell death induced by cigarette smoke extract. We also studied the cross talk between p45 NFE2 and DJ-1. DJ-1 protein is a redox-sensitive chaperone that protects cells from oxidative stress. We detected that cigarette smoke significantly increased p45 NFE2 levels in DJ-1 KO mice compared to wild-type mice. Our results indicate that p45 NFE2 expression is induced by exposure to cigarette smoke, has a cytoprotective activity against cell injury, and its downregulation in human primary ATII cells may contribute to emphysema pathogenesis.


Assuntos
Enfisema/genética , Pulmão/efeitos dos fármacos , Subunidade p45 do Fator de Transcrição NF-E2/genética , Proteína Desglicase DJ-1/genética , Animais , Proliferação de Células/genética , Fumar Cigarros/efeitos adversos , Enfisema/fisiopatologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/metabolismo , Pulmão/fisiopatologia , Camundongos Knockout , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/fisiopatologia
20.
Biofabrication ; 9(1): 015017, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28140336

RESUMO

Topographical features of cells at nanometre resolution were fabricated in polystyrene. The study investigated the effect of physical topography on the response of cancer cells to the common anticancer drugs, paclitaxel and doxorubicin. Human endometrial cancer cells (Ishikawa) were incubated on substrates containing cell-like features that had been fabricated using our bioimprint methodology to create moulds of cells with positive (convex) and negative (concave) topography. Control cultures were performed on flat substrates. Effects of the drugs on caspase-3 expression, proliferating nuclear antigen (PCNA) expression, cell number and vascular endothelial growth factor (VEGF) secretion were determined. Results revealed that the topography influenced the cell responses in a drug-dependent manner i.e. paclitaxel effects were sensitive to topography differently to those of doxorubicin. In addition, function signalling pathways were sensitive to the detailed topography i.e. positive imprint and negative imprint induced distinct response patterns. The results in this study show for the first time that a culture surface with cell-like topography, that has both nano- and micro-resolution, influences endometrial cancer cell responses to chemotherapy drugs. The effects are dependent on the topography and also on the chemotherapy drug. In particular, the platforms described have potential to provide substrates with high physical relevancy on which to undertake preclinical testing of new drugs. The method also allows for use of different cell types to provide cell-specific topography. The results imply that physical architecture of the cancer cell environment may be a suitable prospective target to enhance clinical activity of traditional drugs. Additionally or alternatively we provide compelling support for the notion that understanding the physical component of the nano- and micro-environment may encourage a redirection of drug development. Further, our observation that the cells distinguish between the different cell-like topographies (positive and negative bioimprints) indicates that a realistic topography is advantageous as growth platforms in experiment design.


Assuntos
Antineoplásicos/farmacologia , Bioimpressão , Proliferação de Células/efeitos dos fármacos , Nanoestruturas/química , Antineoplásicos/uso terapêutico , Caspase 3/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Microscopia Eletrônica de Varredura , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Poliestirenos/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Propriedades de Superfície , Fator A de Crescimento do Endotélio Vascular/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA